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SUMMARY

M = 2.25 shock-wave/turbulent-boundary-layer interactions over a compression ramp for several angles
(8, 13 and 18◦) at Reynolds-number Re�0 = 7× 103 were simulated with three low-Reynolds second-
moment closures and a linear low-Reynolds standard k–ε model. A detailed assessment of the turbulence
closures by comparison with both mean-flow and turbulent experimental quantities is presented. The
Reynolds-stress model which is wall-topology free and which uses an optimized redistribution closure,
is in good agreement with experimental data both for wall-pressure and mean-velocity profiles. De-
tailed analysis of three components of the Reynolds-stress tensor (comparison with measurements and
transport-equation budgets) provides a critical evaluation of full Reynolds-stress models for the separated
supersonic compression ramp. The discrepancy observed in the shock-wave foot region, between com-
putations and measurements for the Reynolds-stresses profiles, could be explained by considering the
experimental shock-wave oscillation and directions for future modelling work are indicated. Copyright q
2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerous previous works [1–15] have highlighted the difficulty to predict numerically shock-
wave/turbulent-boundary-layer interactions in supersonic compression corner flows.

Low-Reynolds number standard eddy-viscosity models are not adapted to predict supersonic
flows with a large separation zone. Knight et al. [12], Haidinger and Friedrich [4], Dolling
[7], Gerolymos et al. [13], Liou et al. [8] and Sinha et al. [15] have shown that linear two-
equation closures, such as the k–ε models of Chien [16], Jones and Launder [17], and Launder
and Sharma [18] or the k–� model of Wilcox [19], underestimate the upstream influence for the
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24◦ compression ramp of Settles et al. [20]. Rizzetta [6] reached the same conclusion with the
k–ε model of Jones and Launder [21] for the 24-deg compression ramp of Kuntz et al. [22].
In accordance with the unsatisfactory wall-pressure prediction, all of the linear two-equation
models assessed underpredict the mean-flow velocity profiles, especially upstream of the corner.
On the contrary, the k–� model developed by Robinson and Hassan [23] predicts the correct wall-
pressure distribution for the 25-deg compression ramp of Zheltovodov et al. [24], but severely
overpredicts the axial mean-flow velocity in the recovery region [11]. The q–� model of Coakley
and Huang [25], assessed by Gerlinger and Brüggemann [26], gives the same kind of results for
the 24-deg compression ramp of Settles et al. [20]. Liou et al. [8] assessed the zonal k–ε/k–�
model of Menter [27] for the compression ramps of Settles et al. [20]. The model of Menter
[27] is in good agreement with experimental data for the 8- and 16-deg compression-ramp angles
which do not present detached flows, but overestimates the separation zone for the 20- and 24-deg
angles.

Explicit algebraic Reynolds-stress models (EARSM), such as the model of Craft et al. [28] and
the model of Gatski and Speziale [29] and Abid et al. [30], generally overpredict the recirculation
zone. This overprediction becomes more pronounced with increasing compression-ramp angle
[6, 9]. Rizzetta [6] considers that the EARSM offers little improvement over 0-, 1- and 2-equation
closures. Matesanz and Velazquez [9] proposed an EARSM based on the model of Abid et al. [30]
with the compressibility correction of Wilcox [31], which predicts quite well the recirculation zone
for the 20-deg compression ramp of Settles et al. [20]. Nevertheless, Matesanz and Velazquez [9]
concluded that full Reynolds-stress model (RSM) are more accurate than algebraic Reynolds-stress
models.

Indeed, it seems that only more elaborate statistical turbulence models have the ability to
predict the large separation zone experimentally observed at important compression-ramp angles.
The multiscale k–� model of Wilcox [1], the RSM of Haidinger and Friedrich [4], which uses the
�-equation of Wilcox [32], and the RSM of Gerolymos and Vallet [33], give similar results for
the 20-deg and the 24-deg compression ramps of Settles et al. [20]. Note that both these second-
moment closures are fully wall-topology free (these models do not use any wall-function, normal
to the wall or distance from the wall), and the RSM developed by Haidinger and Friedrich [4]
contains compressibility effects. These three advanced turbulence closures are in good agreement
with experimental data for the wall-pressure distribution and slightly overpredict the mean-flow
velocity near the wall (y/�0<0.4) downstream the shock-wave interaction [1, 5, 7, 34]. Concerning
the Reynolds stresses distributions, few comparisons between computation and experiments have
been published [4, 6] mainly because of the lack of measurements. The predictions of Reynolds-
stresses profiles obtained using EARSM [6] or RSM [4] are generally not in very good agreement
with experimental data.

To overcome these discrepancies, Rizzetta and Visbal [10] chose to make a great progress
by using large-eddy simulation (LES). Indeed, the unsteadiness of the shock wave in supersonic
compression corner flows has been observed experimentally by several authors whose studies are
described in detail by Dolling [7, 35] and Knight et al. [12]. Unfortunately, certainly because of the
substantially lower than experimental Reynolds number, the LES predictions were not better than
advanced RANS models [1, 5, 7, 34] for the four compression-ramp angles of Settles et al. [20].
On the contrary the upstream influence was slightly overestimated except for the 24-deg angle
case, and the Reynolds stresses profiles were not in good agreement with experimental data.

More recently, an hybrid LES/k–� model was developed by Xiao et al. [11] and assessed
for the compression ramp of Zheltovodov et al. [24]. This model improves the prediction of the
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mean-flow velocity profiles in the recovery region, but the RANS model of Robinson and Hassan
[23] is in better agreement with experimental data in the separated flow region. Finally, Sinha
et al. [15] proposed a shock-unsteadiness modification to the linear two-equation RANS models
of Wilcox [19] and of Launder and Sharma [18]. The modified models are in better agreement
with experimental data of Settles et al. [20], but fail to predict the correct upstream influence for
any of the compression-ramp angles (16, 20 and 24◦). However, it should be kept in mind, that
most of the experimental data used [20, 22, 24] are time averaged, and as Dolling [7, 35] recom-
mended, it is important to understand both the turbulence-model limitations and how the experi-
mental data were generated, before providing any conclusion. Furthermore, none of the turbulence-
model reviews [7, 8, 12] have considered the predictions obtained by using full Reynolds-stress
models.

The purpose of the present paper is to analyse comparisons between measurements and compu-
tations using various low-Reynolds number near-wall Reynolds-stress and k–ε models, for several
compression-ramp angles with particular emphasis on the turbulence structure prediction. The
compression-ramp configurations examined were studied experimentally by Ardonceau [36]. This
experimental database is interesting because both mean-flow and Reynolds-stresses experimental
distributions are available for three compression-ramp angles. Furthermore, the channel is large
enough to consider that the experimental data are reasonably free of 3-D effects. The near-wall
wall-topology-free RSM developed by Gerolymos and Vallet [33] was compared to the Launder
and Shima [37] RSM (which uses geometric wall normals and distances from the wall) and its
wall-topology-free version [34] for each configuration. The linear Launder and Sharma k–ε closure
[18] was used for comparison because its predictions are typical of two-equation closures. The
redistribution-term impact (missing in two-equation closures) is evaluated through detailed com-
parisons with experimental data of the Reynolds stresses profiles and transport-equation budgets
analysis. All computations were carefully checked for grid convergence for all of the turbulence
closures used, and with identical experimental inflow conditions. The performance of the various
models used (which are described in detail to enhance understanding of the computational re-
sults), is carefully assessed and the link with the experimental unsteadiness induced shock-wave
oscillation and its consequences is mentioned.

2. TURBULENCE CLOSURES

2.1. Mean-flow model

The flow is modelled by the compressible Favre–Reynolds-averaged 3-D Navier–Stokes equations.
Denoting t the time, x� the Cartesian space coordinates, ui the velocity components, � the den-
sity, p the pressure, �i j the Kronecker symbol, �i j the viscous stresses, (̃·) Favre-averaging, (·)
non-weighted-averaging (or Reynolds-averaging), (·)′′ Favre-fluctuations and (·)′ non-weighted-
fluctuations (for any flow quantity b= b̃ + b′′ = b̄ + b′ and for any flow quantities [38] b1 and
b2: b′′

1b
′
2 ≡ b′

1b
′
2 ≡ b′

1b
′′
2). The symbol ˘(·) is used to denote a function of average quantities that is

neither a Favre-average nor a non-weighted average

��̄

�t
+ ��̄ũ�

�x�

= 0 (1)
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��̄ũi
�t

+ �(�̄ũi ũ�)

�x�

= − � p̄
�xi

+ �
�x�

[�̄i� − �̄˜u′′
i u

′′
� ] (2)

�(�̄h̆t − p̄)

�t
+ �(�̄ũ�h̆t )

�x�

= �
�x�

[ũi (�̄i� − �̄˜u′′
i u

′′
�) − (q̄� + �̄˜h′′u′′

�)] − Sh̆t (3)

with

Sh̆t = �̄˜u′′
i u

′′
�

�ũi
�x�︸ ︷︷ ︸

−Pk =− 1
2 Pmm

+ �′
i�

�u′′
j

�x�︸ ︷︷ ︸
�̄ε = 1

2 �̄εmm

+�[p′u′
�]

�x�

− p′ �u
′
�

�x�

+ u′′
�

� p̄
�x�

+ �i�
�u′′

i

�x�

(4)

We preferred to solve a transport equation for the total enthalpy of the mean flow h̆t = h̃ + 1
2 ũi ũi

rather than for the Favre-averaged total enthalpy h̃t = h̆t + k (h is the specific enthalpy, and

k = 1
2

˜u′′′
i u

′′
i is the turbulent kinetic energy). Indeed, this involves a link between the source term

in the mean energy equation Sh̆t and the turbulent kinetic energy transport equation (which is the
trace of the Reynolds-stress transport equations), and simplifies the closure of the mean energy
transport equation. Neglecting the density-fluctuation effect u′′

i (u
′′
i ≡ ūi − ũi =−�′u′′

i /�̄ represents

direct compressibility effects), the pressure diffusion term �p′u′
�/�x� and the pressure-dilatation

correlation p′(�u′
�/�x�), the source term in the mean energy equation is simplified by

Sh̆t
∼=−(Pk − �̄ε) (5)

where Pk and ε are, respectively, the production and the dissipation rate of the turbulent kinetic
energy transport equation (Equation (13)).

Neglecting the influence of temperature fluctuations, the mean viscous stress tensor and the
molecular heat-flux vector are approximated in the usual way by [38, 39]

�̄i� ∼= �̆

(
�ũi
�x�

+ �ũ�

�xi
− 2

3

�ũm
�xm

�i�

)
, �̆ = �(T̃ ) = �273

T̃ 3/2

273.153/2
TS + 273.15

TS + T̃
(6)

q̄�
∼= −�̆

�T̃
�x�

, �̆= �(T̃ ) = �273
�(T̃ )

�273
[1 + A�(T̃ − 273.15)] (7)

All computations were performed for air (Rg = 287.04m2 s−2 K−1) considered thermodynami-
cally and calorically perfect ( p̄= �̄RgT̃ , 	 = 1.4), and we used a Sutherland law dependence
for molecular dynamic viscosity �̆ and a corrected Sutherland law [40] heat conductivity �̆
(�273 = 17.11× 10−6 Pa s, �273 = 0.0242Wm−1 K−1, TS = 110.4K, and A� = 0.00023K−1). Thus,
the compressibility effect for all of the models studied in the present work, is taken into account
by the variation of the mean-flow density �̄.

By analogy with the molecular heat-flux model, the turbulent heat-flux is closed by a simple
gradient model and we used a constant turbulent Prandtl number PrT = 0.9 to obtain the correct
recovery temperature for turbulent flow over an adiabatic wall [38]

�̄˜h′′u′′
i
∼=−�T

�T̃
�xi

, �T = 0.09e−3.4/(1+0.02 Re∗
T)2 �̆ Re∗

T, Re∗
T = �̄k2

�̆ε∗ (8)
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where cp = Rg	/(	 − 1) is the heat capacity at constant pressure and Re∗
T the turbulent Reynolds

number based on the modified dissipation-rate ε∗ = ε −2
̆(grad
√
k)2 [17]. This closure introduces

an eddy-diffusivity �T = 
T/PrT and a turbulent Prandtl number PrT = �Tcp/�T, which are non-
physical quantities as the Boussinesq hypothesis does with the turbulent-viscosity �T for the
Reynolds-stress tensor closure (Equation (14)). An alternative, independent of constant-turbulent-
Prandtl-number assumption, is to solve directly transport equations for the turbulent heat fluxes
and the temperature variance dissipation rate [5, 41].

2.2. Turbulent transport equations

The exact transport equations for the Favre–Reynolds-averaged Reynolds-stresses are

��̄˜u′′
i u

′′
j

�t
+ �(�̄˜u′′

i u
′′
j ũ�)

�x�︸ ︷︷ ︸
convection Ci j

= �
�x�

(−�̄ ˜u′′
i u

′′
j u

′′
� − p′u′′

j�i� − p′u′′
i � j� + u′′

i �
′
j� + u′′

j�
′
i�)︸ ︷︷ ︸

diffusion di j

+
(

−�̄˜u′′
i u

′′
�

�ũ j

�x�

− �̄˜u′′
j u

′′
�

�ũi
�x�

)
︸ ︷︷ ︸

production Pi j

+ p′
(

�u′′
i

�x j
+ �u′′

j

�xi
− 2

3

�u′′
k

�xk
�i j

)
︸ ︷︷ ︸

redistribution �i j

+ 2

3
p′ �u

′′
k

�xk
�i j︸ ︷︷ ︸

pressure-dilatation �p

−
⎛⎝�′

j�

�u′′
i

�x�

+ �′
i�

�u′′
j

�x�

⎞⎠
︸ ︷︷ ︸

dissipation �̄εi j

+
(

−u′′
i

� p̄
�x j

− u′′
j
� p̄
�xi

+ u′′
i
��̄ j�

�x�

+ u′′
j
��̄i�
�x�

)
︸ ︷︷ ︸

density fluctuation effects Ki j

(9)

Convection, Ci j , and production due to the interaction with the mean-flow gradients, Pi j , are
exact terms, whereas the diffusion di j = dTi j + d�

i j due to turbulent transport dTi j = dui j + d p
i j and

molecular viscosity d�
i j , the pressure-strain redistribution �i j and the dissipation �̄εi j terms require

modelling. In all of the models used, direct compressibility effects Ki j , the pressure-diffusion term

d p
i j =−�(p′u′′

j�i� + p′u′′
i � j�)/�x�, and pressure-dilatation �p were neglected

Ki j ∼= 0, d p
i j

∼= 0, �p
∼= 0 (10)

It is generally accepted [42] that Ki j and �p do not have a major influence in wall-bounded
flows and recent work by Pantano and Sarkar [43] indicates that the well-known free-shear-flow
major compressibility effect might be due to compressibility damping of �i j . On the contrary,
the pressure-diffusion term seems to have substantial influence in 3-D detached and secondary
flows [44, 45], but not in 2-D flows except for the friction-skin coefficient downstream of the
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shock-wave/turbulent boundary-layer interaction [44]. If the pressure diffusion term is neglected,
the diffusion is approximated by

di j ∼= �
�x�

⎡⎣−�̄ ˜u′′
i u

′′
j u

′′
� + �̆

�˜u′′
i u

′′
j

�x�

⎤⎦ (11)

The influence of the pressure-diffusion term is examined in detail in Sauret and Vallet [44] and
Vallet [45]. The triple-velocity correlation −�̄ ˜u′′

i u
′′
j u

′′
� , the pressure-strain redistribution �i j and

the dissipation �̄εi j terms modelling are described in Sections 2.4–2.6.
For all of the models studied in the present work, the turbulence-length-scale was determined

by solving the Launder and Sharma [18] modified dissipation-rate ε∗ equation with the exception
of the diffusion term where a tensorial diffusion coefficient is used [46, 47]

��̄ε∗

�t
+�(ũ��̄ε∗)

�x�

= �
�x�

[
Cε

k

ε∗ �̄ ˜u′′
mu

′′
�

�ε∗

�xm
+�̆

�ε∗

�x�

]
︸ ︷︷ ︸

dε=dTε +d�
ε

+Cε1Pk
ε∗

k
− Cε2�̄

ε∗2

k
+2�̆�T

�̄
(∇2 Ṽ)2

Cε = 0.18, Cε1 = 1.44, Cε2 = 1.92(1 − 0.3e−Re∗
T
2
)

(12)

Recent work [48] improves the closure of the dissipation-rate ε-equation (ε∗ = ε−2
̆(grad
√
k)2,

where 
̆ is the kinematic viscosity, ε is the dissipation rate of the turbulence-kinetic-energy k),
especially close to the wall, but from a numerical-stability point of view, it is quite complicated
to modify this equation. Indeed, the Dirichlet boundary condition for the modified dissipation
rate ε∗ = 0 at a solid wall (instead of ε = 2
̆(�

√
k/�n)2, where n is the distance from the wall) is

compatible with the realizability constraints implementation in the numerical method used [49, 50].
Furthermore, the Jakirlić and Hanjalić modification of the dissipation-rate ε-equation [48] requires
a new closure for the dissipation-tensor εi j in the Reynolds-stress equations. However, in the family
of RSMs considered in the present work, the anisotropy of εi j is modelled together with the slow
part of the pressure-strain correlation �i j1 (Equations (17) and (26)), and further work is needed
to model these two terms separately.

2.3. The Launder and Sharma k–ε model (LS k–ε)

The low-Reynolds-number k–ε closure of Launder and Sharma [18] is used as a baseline eddy-
viscosity model prediction. The substantial well-known disadvantages of the k–ε model are mainly
due to (1) the use of the Boussinesq hypothesis (Equation (14)), which is based on the analogy with
the mean viscous stress tensor law (Equation (6)), and (2) the impossibility to take into account
the turbulence anisotropy (�mm = 0).

This two-equation closure, widely used especially for industrial configurations, solves a transport
equation for the turbulent-kinetic energy k

��̄k

�t
+ ��̄kũ�

�x�

= �
�x�

[(
�̆ + �T


k

)
�k
�x�

]
+ Pk − �̄�, 
k = 1 (13)
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with the Boussinesq hypothesis for the Reynolds-stress tensor closure present in the mean-flow
equation (Equations (2) and (3)) and the production Pk (Equations (4) and (13))

−�̄˜u′′
i u

′′
�
∼= �T

(
�ũi
�x�

+ �ũ�

�xi
− 2

3

�ũm
�xm

�i�

)
− 2

3
�̄k�i� (14)

and a transport equation for the modified dissipation-rate ε∗ (Equation (12)) where the turbulent
diffusion dTε is computed as

dTε = �
�x�

(
�T

�

��∗

�x�

)
, 
� = 1.3 (15)

2.4. The Launder–Shima–Sharma RSM (LSS RSM)

The Launder–Shima–Sharma Reynolds-stress closure (hereafter LSS RSM) uses the Reynolds-
stress closure proposed by Launder and Shima [37] but with the Launder and Sharma [18] modified
dissipation-rate ε∗-equation of the k–ε model (Equations (12) and (15)). Indeed, the corrections
proposed in the original dissipation-rate ε-equation of Launder and Shima [37] were unsuitable
for supersonic or detached flows [51, 52]. The pressure-strain redistribution term is classically [53]
split into a slow and a rapid part, and the corresponding echo terms

�i j =�i j1 + �i j2 + �w
i j1 + �w

i j2 (16)

The slow part �i j1 and the dissipation term �̄εi j were modelled together by using the quasi-linear
form proposed by Rotta [54] with a coefficient C1 =C1(ReT, A2, A3) suggested by Lumley [55]

�i j1 − �̄εi j = [�i j1 − �̄εi j + 2
3 �̄ε�i j ] − 2

3 �̄ε�i j

= −C1(ReT, A2, A3)�̄εai j − 2
3 �̄ε�i j (17)

ai j =
˜u′′
i u

′′
j

k
− 2

3
�i j , A1 = aii = 0, A2 = aikaki , A3 = aikak ja ji (18)

Thus, the anisotropic part of the dissipation tensor is taken into account through the coefficient
C1, which is a function of the turbulent Reynolds-number ReT and the anisotropy tensor invariants
A2 and A3 (Equation (18)). Several authors [48, 56–58] have shown, using DNS data [59], that
these two terms (�i j1 and εi j ) require separate closures especially close to the wall. However, this
simplified form (Equation (17)) is numerically very stable at the wall. This increased numerical
stability is very practical when computing complex flows over complex geometries [50, 60].

The rapid part closure was proposed by Naot et al. [61, 62] which also corresponds to one of
the proposals of Launder et al. [63]

�i j2 =−C2(Pi j − 1
3�i j Pmm) (19)

The LSS closure uses the geometric-distance-from-the-wall and the geometric-normal-to-the-wall
direction in the echo terms by adopting the closures proposed by Shir [64] for the slow part �w

i j1
and by Gibson and Launder [65] for the rapid-part �w

i j2, where f is a damping function calibrated
for a flat plate boundary layer by Shir [64] using the von Karman constant �VK, the turbulent
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length-scale �T and the distance from the wall n.

�w
i j1 + �w

i j2 =Cw
1

ε

k

[
�̄ ˜u′′

qu
′′
mnqnm�i j − 3

2
�̄˜u′′

qu
′′
i nqn j − 3

2
�̄˜u′′

qu
′′
j nqni

]
f

+Cw
2

[
�qm2nqnm�i j − 3

2
�iq2nqn j − 3

2
� jq2nqni

]
f (20)

f = �VK
�T

n
, �VK = 0.4, �T = k3/2ε−1 (21)

The improved coefficients proposed by Launder and Shima [37] are functions of the turbulent
Reynolds-number ReT, the second anisotropy tensor invariant A2, and the flatness parameter
A= 1 − 9

8 (A2 − A3) introduced by Lumley [66]
C1 = 1 + 2.58AA1/4

2 [1 − e−(ReT/150)2], C2 = 0.75
√
A (22)

Cw
1 = 1 − 2

3 (C1 − 1), Cw
2 = max

[
2

3
− 1

6C2
, 0

]
(23)

The triple-velocity correlation is modelled by the Daly and Harlow [67] proposal

−�̄ ˜u′′
i u

′′
j u

′′
� =Cs

k

ε

⎛⎝�̄ ˜u′′
�u

′′
m

�˜u′′
i u

′′
j

�xm

⎞⎠ , Cs = 0.22 (24)

2.5. The Gerolymos and Vallet wall-normal-free RSM (GV RSM)

In complex flows, such as a large recirculation zone, even on a flat plate where the normal to the
wall and the distance from the wall can be easily determined, the inhomogeneous part of the flow
is not confined to the immediate vicinity of the solid wall. Consequently, the use of conventional
echo terms (Equation (20)), with damping functions where geometric parameters appear explicitly,
is inappropriate. To account for these effects, it is preferable to split the redistributive term into
an homogeneous and an inhomogeneous part following the idea proposed by Craft and Launder
[68].

Gerolymos and Vallet [33] and Gerolymos et al. [34] introduced a unit-vector eI pointing in the
direction of inhomogeneity of the turbulent field to replace the geometric wall-normals.

eI = eIi ei =
grad

{
�T[1 − e−ReT/30]
1 + 2

√
A2 + A16

}
∥∥∥∥grad{ �T[1 − e−ReT/30]

1 + 2
√
A2 + A16

}∥∥∥∥ (25)

The model for pressure-strain and dissipation terms, which are modelled together (cf. 2.4), reads

�i j − �̄εi j =
[
�i j − �̄

(
εi j − 2

3
�i jε

)]
− 2

3
�i j �̄ε

= �H
i j1 + �H

i j2 + �I
i j1 + �I

i j2 − 2

3
�i j �̄ε
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= −CH
1 �̄εai j − CH

2

(
Pi j − 1

3
�i j Pmm

)

+C I
1
ε

k

[
�̄ ˜u′′

nu
′′
meIn eIm�i j − 3

2
�̄˜u′′

nu
′′
i eIn eI j − 3

2
�̄˜u′′

nu
′′
j eIn eIi

]

+C I
2

[
�H
nm2eIn eIm�i j − 3

2
�H
in2eIn eI j − 3

2
�H

jn2eIn eIi

]
− 2

3
�i j �̄ε (26)

where the coefficients C I
1 and C I

2 contain distance from the wall effects but without using any
wall-topology parameter.

C I
1 = 0.83

[
1 − 2

3
(CH

1 − 1)

] ∥∥∥∥∥grad
{

�T[1 − e−ReT/30]
1 + 2A0.8

2

}∥∥∥∥∥
C I
2 =max

[
2

3
− 1

6CH
2

, 0

]∥∥∥∥∥grad
{

�T[1 − e−ReT/30]
1 + 1.8Amax(0.6,A)

2

}∥∥∥∥∥
(27)

The homogeneous terms �H
i j1 and �H

i j2 correspond to the forms proposed respectively by Rotta

[54] and Naot et al. [61, 62]. The slow-part coefficient CH
1 proposed by Launder and Shima [37]

CH
1 = 1 + 2.58AA1/4

2 [1 − e−(ReT/150)2] (28)

includes the anisotropic part of the dissipation term (Equation (17)). The rapid-part coefficient CH
2

was developed by Gerolymos and Vallet [33]

CH
2 =min[1, 0.75 + 1.3max[0, A − 0.55]]

× A[max(0.25,0.5−1.3max[0,A−0.55])]
[
1 − max

(
0, 1 − ReT

50

)]
(29)

Despite the simple model (isotropization of production) used for the homogeneous rapid-part
redistribution term �H

i j2, the particular form of the coefficient CH
2 (Equation (29)) in conjunction

with the wall-topology-free inhomogeneous terms (Equations (26) and (27)), both improves the
prediction of detached flows [34] and preserves the numerical stability close to the wall for 3-D
complex flows.

The Hanjalić and Launder [46] proposal (Equation (30)), which respects the tensorial symmetry

of ˜u′′
i u

′′
j u

′′
� , was used to model the triple-velocity correlation

−�̄ ˜u′′
i u

′′
j u

′′
� =Cs

k

ε

⎛⎝�̄ ˜u′′
i u

′′
m

�˜u′′
j u

′′
�

�xm
+ �̄ ˜u′′

j u
′′
m

�˜u′′
�u

′′
i

�xm
+ �̄ ˜u′′

�u
′′
m

�˜u′′
i u

′′
j

�xm

⎞⎠ , Cs = 0.11 (30)

2.6. Wall-normal-free Launder–Shima–Sharma RSM (WNF-LSS RSM)

The unit-vector eI (Equation (5)) developed by Gerolymos and Vallet [33] can be used in any
Reynolds-stress model to replace the geometric unit normals to the wall which are often used in
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the redistribution or dissipation tensors closures [48, 69, 70]. In order to demonstrate the ease of
implementation and the importance of using geometric-normals to the wall (or not), a wall-normal-
free version of the LSS RSM was developed by Gerolymos et al. [34]. This model is based on
the Launder–Shima–Sharma Reynolds-stress model (Section 2.4) except for the echo terms that
were replaced by inhomogeneous terms (Equation (26)) while the homogeneous coefficients CH

1
and CH

2 were those of the original wall-topology-dependent Launder and Shima model [37]

CH
1 = 1 + 2.58AA1/4

2 [1 − e−(ReT/150)2], CH
2 = 0.75

√
A (31)

The functions C I
1 and C

I
2 where then optimized to get the correct plane-channel-flow mean velocity

and Reynolds-stress profiles [34]

C I
1 = 0.90

[
1 − 2

3
(C1 − 1)

] ∥∥∥∥∥grad
{

�T[1 − e−ReT/30]
1 + 1.8A0.8

2

}∥∥∥∥∥
C I
2 =max

[
2

3
− 1

6C2
, 0

] ∥∥∥∥∥grad
{

�T[1 − e−ReT/30]
1 + 1.8Amax(0.6,A)

2

}∥∥∥∥∥
(32)

3. COMPARISON WITH EXPERIMENTS

3.1. Configurations studied

The various turbulence closures were assessed by comparison with available experimental data
for the compression-ramp configurations (MSW = 2.25, Re�0 = 7× 103) studied experimentally by
Ardonceau [36, 71].

This test case, which includes three ramp angles (�c = 8, 13, and 18◦), is very interesting because
experimental data include wall-static-pressure distributions, Pitot-tube-measured x-wise mean ve-
locity (ū) and 3 LDV-measured Reynolds-stress components (u′u′, u′v′, v′v′). Furthermore, the
experimental supersonic wind tunnel is large enough (z = 150mm= 18.75�0) to assume that there
is no 3-D influence. The 3-D experimental visualization of the flow using viscous coating technique
on the wall [72] corroborates the 2-D nature of the interaction on the �c = 18◦ compression-ramp
angle. The �c = 18◦ angle ramp includes a straight part at its end [72], which was simulated in the
computations (Figure 1).

3.2. Numerical method

The flow equations are discretized on structured grids using an upwind biased (O[�x3] MUSCL re-
construction) finite-volume scheme [49]. Time integration uses a local-dual-time-stepping implicit
procedure with internal subiterations. Computational efficiency is achieved by a specific approxi-
mate factorization of the implicit subiterations, designed to minimize the computational cost of the
turbulence-transport-equations. Convergence is still accelerated using a mean-flow-multigrid full-
approximation-scheme method, where multigrid is applied on the mean-flow-variables
only [50].
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Figure 1. View of a coarse computational grid (Ni × N j = 101× 101, r j = 1.180,
y+
w = 0.5), boundary-conditions and initial flowfield Mach-number for the Ardonceau

[36, 71] �c = 18◦ compression-ramp interaction.

Table I. Computational grids used.

Grid Ni (Nx ) N j (Ny) N js r j y+
w

∼= n+
w Lx (m) Ly (m)

Grid C 801 801 401 1.0193 0.1 0.28 0.15
Grid B 601 601 301 1.0270 0.1
Grid A 401 201 101 1.0975 0.1

i , j : grid directions; Ni , N j : number of points; y+
w : non-dimensional distance of the first-grid-node

away from the wall; r j : geometric progression ratio; Lx , Ly : lengths.

3.3. Computational grids

In the streamwise direction (x ,i) the computational grids used are uniform (Figure 1), whereas
in the transverse direction (y, j) the N js = N j/2 + 1 points for each half of the computational
domain (between the upper/lower wall and the centreline) were stretched geometrically with ratio
r j (Table I).

A grid-convergence study was conducted by using various grids (Table I) for the three comp-
ression-ramp angle configurations with all the four turbulence models.

Results obtained with the GV RSM and the LS k–ε model for the �c = 18◦ configuration
(Figure 2) show that grid-convergence is nearly achieved on the coarsest (401× 201) grid A
(Table I). However, the GV RSM results present a slight sensitivity at the detachment point
(x = −0.02m=−2.5�0) for the Reynolds stresses. Therefore, to improve accuracy in the following
study, grid C was used for the GV RSM and grid B for all other turbulence models.

3.4. Inflow conditions

The inflow boundary-layer profile was adjusted to obtain a close fit to the measured inte-
gral boundary-layer parameters at the beginning of the interaction (Table II). Thus, all of the

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:525–555
DOI: 10.1002/fld



536 I. VALLET

(a) (b)

(a)

(a) (a) (a)

(a)

(a) (a) (a)

Figure 2. Grid-convergence study of longitudinal mean velocity, Reynolds stresses and wall-pressure
for the �c = 18◦ Ardonceau [36, 71] compression-ramp interaction, using the GV RSM (a), and the LS

k–ε model (b), on various grids (Table I).

computations were performed using the following experimental inflow conditions:

Tti = 303.6K, pti = 93 000 Pa, T̃w = Tr = 286.8K (33)

where Tti is the inlet total temperature, pti is the inlet total pressure, T̃w is the wall temperature,
and Tr is the theoretical adiabatic-wall-recovery temperature (r f = 0.89) [38]. The inlet free-stream
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Table II. Inflow integral boundary-layer parameters at the
beginning of the interaction.

Configuration 8, 13, 18◦

�0 × 103 m (comp/exp) 8.02/8.0
Re�0 × 10−4 (comp/exp) 8.0/7.8
Re�0 × 10−3 (comp/exp) 6.23/7
�i (inflow) 0.1

�0 = boundary-layer thickness at the beginning of the in-
teraction; Re�0 = V∞�0
̆

−1∞ = boundary-layer thickness Reynolds-

number; Re�0 = V∞�0
̆
−1∞ = boundary-layer momentum-thickness

Reynolds-number; �0 = ∫ �
0 �̄ũ/�̄ũ∞(1− ũ/ũ∞) dy = boundary-layer

momentum-thickness at the beginning of the interaction; �i =Coles
wake-parameter used to define the inflow profile applied as boundary
condition [73].

turbulence intensity Tui =
√

2
3ki V

−1
i and the inlet free-stream turbulence-length-scale �Ti = k2/3i ε−1

i
(not measured in the experiments) chosen correspond, respectively, to classical experimental values
Tui = 1% and to the half-height of the experimental channel �Ti = 25mm.

3.5. Wall-static-pressure distributions

Comparison of grid-converged (Table I) wall-static-pressure distribution computed using the four
turbulence models, with experimental measurements, indicates that only the GV [33] wall-normal-
free RSM predicts the upstream interaction length correctly for all of the three compression-ramp
angles (Figure 3).

The �c = 8◦ compression-ramp angle is not large enough to induce separation, and all of the
turbulence models are in good agreement with experimental data (Figure 3). Although the LSS
RSM, which contains geometric parameters, predicts the correct upstream-interaction length for
the �c = 13◦ compression-ramp angle (Figure 3), the WNF-LSS RSM (which corresponds to its
wall-normal-free version) gives a better shape but with an underestimated level. Nevertheless, for
the large recirculation zone observed for the �c = 18◦ ramp angle (Figure 3), both the LSS and
the WNF-LSS RSMs underestimate the upstream-interaction length. On the other hand, the GV
RSM, which includes a particular form of the rapid-part redistribution coefficient CH

2 (Equation
(29)), gives satisfactory results. The LS k–ε model fails to correctly predict detached flow and
gives the worst prediction for all of the three compression-ramp angles (Figure 3). All of the four
turbulence models fail to reproduce experimental data in the relaxation region after reattachment
(x ∼= 0.03m= 3.75�0). Nevertheless, we can observe a discontinuity in the experimental-data dis-
tributions at the same location. Experimental wall pressure are larger than the inviscid-theory value
at the end of the compression ramp. This suggests the presence, in the experimental set-up, of a
weak-shock-wave (or compression wave), coming from the upper wall, which impacts the lower-
wall boundary-layer at x ∼= 0.03m. Therefore, discrepancies at this location are not significant in
assessing the performance of the turbulence models.
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Figure 3. Comparison of grid-converged computations (Table I) with measurements
[36, 71] of wall-static pressure distributions, for the Ardonceau [36, 71] �c = 8, 13 and
18◦ compression-ramp interaction (M∞ = 2.25, Re�0 = 7× 103) using the GV [33] and
WNF-LSS [34] wall-normal-free RSMs, the LSS [37, 51] RSM with geometric normals

and the LS [18] k–ε model (Mach-contours computed with the GV RSM).
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3.6. Mean-velocity longitudinal distribution

In all the models used, direct compressibility effects were neglected

|�′|	�̄, u′′
i
∼= 0 (34)

so that, Reynolds and Favre averages are assumed to be approximately equal

ũi ∼= ūi , ˜u′′
i u

′′
j
∼= u′

i u
′
j (35)

and comparison between Pitot-tube [71] longitudinal mean velocity (ū) and grid-converged com-
puted longitudinal mean velocity (ũ) was carried out for the three ramp angles (Figures 4–6).

Concerning the �c = 8◦ compression-ramp angle, where the flow remains attached, all of the
four turbulence models are in perfect agreement with experiments (Figure 4). A slight difference
between the GV RSM and the three other turbulence models is observed (Figure 5) for the �c = 13◦
compression-ramp angle at the detachment point (x = −0.5�0) and near the wall at the end of the
compression ramp (x�4.5�0).

Figure 4. Comparison of grid-converged computations (Table I) with measurements [36, 71]
of x-wise mean velocity (ũ, ū) at various axial stations, for the Ardonceau [36, 71] �c = 8◦
compression-ramp interaction (M∞ = 2.25, Re�0 = 7× 103) using the GV [33] and WNF-LSS
[34] wall-normal-free RSMs, the LSS [37, 51] RSM with geometric normals and the LS [18]

k–ε model (iso x-wise mean velocity computed with the GV RSM).
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Figure 5. Comparison of grid-converged computations (Table I) with measurements [36, 71]
of x-wise mean velocity (ũ, ū) at various axial stations, for the Ardonceau [36, 71] �c = 13◦
compression-ramp interaction (M∞ = 2.25, Re�0 = 7× 103) using the GV [33] and WNF-LSS
[34] wall-normal-free RSMs, the LSS [37, 51] RSM with geometric normals and the LS [18]

k–ε model (iso x-wise mean velocity computed with the GV RSM).

As observed in the wall-pressure comparisons (Figure 3), the GV RSM performs better than
the other models for the �c = 18◦ compression-ramp interaction (Figure 6). The GV RSM predicts
correctly the longitudinal mean velocity ũ with the exception of the positions after the corner
(x>0) especially in the relaxation region (x�2.5�0). However, there is a discrepancy between
computations and experiments (Figure 6) only for the first experimental point away from the wall,
located at y = 1mm= 0.125�0, which was obtained using Pitot-tube (LDV data were not used due
to author remarks [71]). Dolling [7] noted, as well, that the multiscale k–� model of Wilcox [1]
underpredicts the mean-velocity profiles near the wall (y/�0<0.4) in the recovery region for the
24-deg compression ramp of Settles et al. [20]. Actually, this is the case for all of the advanced
models, such as Reynolds-stress models [4, 33], which are able to predict correctly the wall-pressure
distribution for several compression-ramp angles including those with a large separation zone
[5, 7, 34]. Because of the shock-wave oscillation, Dolling [7] has shown the difficulty to determine
time-averaged velocity profiles from Pitot-tube measurements in this region. Consequently, the
discrepancy between Pitot-measured and computed mean velocity distribution downstream the
corner near the wall, must be considered with caution when assessing the turbulence model used.

The LS k–ε model seems to give the best results in the reattachment region, but this is simply
because this model is not able to predict the separation zone (Figure 6).

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:525–555
DOI: 10.1002/fld



REYNOLDS-STRESS MODELLING OF SHOCK-WAVE/BOUNDARY-LAYER INTERACTION 541

Figure 6. Comparison of grid-converged computations (Table I) with measurements [36, 71]
of x-wise mean velocity (ũ, ū) at various axial stations, for the Ardonceau [36, 71] �c = 18◦
compression-ramp interaction (M∞ = 2.25, Re�0 = 7× 103) using the GV [33] and WNF-LSS
[34] wall-normal-free RSMs, the LSS [37, 51] RSM with geometric normals and the LS [18]

k–ε model (iso x-wise mean velocity computed with the GV RSM).

3.7. Reynolds-stresses distributions

Comparison of measured (u′u′, u′v′, v′v′) Reynolds-stresses with the computed ones (˜u′′u′′, ũ′′v′′,
ṽ′′v′′) clearly shows the superiority of the RSM models over the LS k–ε model [18] (Figures 7–11),
especially as far as the shear stress is concerned (Figure 11) for the �c = 18◦ compression-ramp
interaction.

3.7.1. 8 Degrees compression-ramp interaction. The three Reynolds-stress models give similar
results for the two normal Reynolds-stresses components ˜u′′u′′ and ṽ′′v′′ (Figure 7). The level
of the x-wise normal Reynolds-stress computed using RSMs is underestimated at the outer
part of the boundary layer (x = 0.5�0, x = 1.5�0) and at the end of the compression ramp
(x�4.5�0).

The y-wise component ṽ′′v′′ (note that ṽ′′v′′ is along the cartesian y-axis, and not along the nor-
mal to the surface after the beginning of the ramp at x = 0) is in good agreement with experimental
data contrary to the LS k–ε model which overestimates the level of ṽ′′v′′ by a factor of about two.
Note that the LS k–ε, which cannot take into account the redistribution between Reynolds-stresses
since �i i = 0, predicts almost the same level at each location both for the x-wise and the y-wise
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Figure 7. Comparison of grid-converged computations with measurements of normal Reynolds-stresses
(˜u′′u′′, ṽ′′v′′) at various axial stations, for the �c = 8◦ compression-ramp angle using four turbulence

models (iso x-wise and y-wise normal Reynolds-stresses computed with the GV RSM).
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Figure 8. Comparison of grid-converged computations (Table I) with measurements [36, 71] of x-wise
normal Reynolds-stress (˜u′′u′′, u′u′) at various axial stations, for the Ardonceau [36, 71] �c = 13◦
compression-ramp interaction (M∞ = 2.25, Re�0 = 7× 103) using the GV [33] and WNF-LSS [34]
wall-normal-free RSMs, the LSS [37, 51] RSM with geometric normals and the LS [18] k–ε model

(iso x-wise normal Reynolds-stress computed with the GV RSM).

Reynolds-stresses components (for example, at x = 7.5�0, ˜u′′u′′ 
 ṽ′′v′′ 
 1000m2 s−2) and fails
to predict turbulence quantities (Figure 7).

Surprisingly, the LS [18] k–ε model captures the high level of the y-wise component ṽ′′v′′
(Figure 7) at the outer part of the boundary layer in the shock-wave-foot region (x = 0.5�0 and
x = 1.5�0). Actually, this good prediction seems to be a coincidence since it concerns only the
ṽ′′v′′ component (not the ˜u′′u′′ component) for the �c = 8◦ and the �c = 13◦ compression-ramp
angles (Figures 7 and 9) whereas the prediction for �c = 18◦ case is not correct (Figure 10) at
x = 0.5�0. Furthermore, the experimental high turbulence level in this region is certainly due to
the shock-wave oscillation which cannot be predicted by a steady computation using a classical
statistical turbulence closure.

3.7.2. 13 Degrees compression-ramp interaction. The �c = 13◦ compression-ramp interaction is
on the verge of separating and quite different predictions of the turbulence quantities are obtained
using the four turbulence models. The LS k–ε gives the worst results with a near isotropic
turbulence (Figures 8 and 9). Although the three Reynolds-stress models are in better agreement
with experiments, the level of the x-wise component (Figure 8) is underestimated while the y-wise
component level is overestimated after the corner of the compression ramp (Figure 9). The LSS
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Figure 9. Comparison of grid-converged computations (Table I) with measurements [36, 71] of y-wise
normal Reynolds-stress (ṽ′′v′′, v′v′) at various axial stations, for the Ardonceau [36, 71] �c = 13◦
compression-ramp interaction (M∞ = 2.25, Re�0 = 7× 103) using the GV [33] and WNF-LSS [34]
wall-normal-free RSMs, the LSS [37, 51] RSM with geometric normals and the LS [18] k–ε model

(iso y-wise normal Reynolds-stress computed with the GV RSM).

RSM, which contains the geometric normal to the wall and the distance to the wall, gives the best
overall results, but the �c angle is not high enough to bring forward the wall-normal-free effect.

3.7.3. 18 Degrees compression-ramp interaction. The �c = 18◦ compression-ramp angle is the
most interesting because the boundary-layer/shock-wave interaction produces a small separation
zone at the corner, and experimental shear-stress distributions are available (Figures 10 and 11),
contrary to the two other angles for which only normal stresses were measured.

For the x-wise velocity fluctuations ˜u′′u′′ (Figure 10), the GV RSM captures correctly the level
and the form at the outer part of the boundary layer, mainly because of the better prediction
of the velocity profile (Figure 6). Nevertheless, the GV RSM underestimates the peak of ˜u′′u′′
especially at the beginning of the interaction (x = −1.5�0, −0.5�0) contrary to the LSS RSM
which gives the correct level at each location. However, considering that the LSS RSM predicts
the detachment point (x =−1.5�0) downstream of the experimental position (x = −2.5�0), this
relatively good ˜u′′u′′-level prediction should be regarded critically. The k–ε model fails to correctly
predict the high turbulence levels at the outer edge of the boundary layer everywhere (x�−1.5�0)
and gives a level of the peaks similar of those obtained by using the LSS RSM after the corner
(x�0.5�0).
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Figure 10. Comparison of grid-converged computations with measurements of normal Reynolds-stresses
(˜u′′u′′, ṽ′′v′′) at various axial stations, for the �c = 18◦ compression-ramp angle using four turbulence

models (iso x-wise and y-wise normal Reynolds-stresses computed with the GV RSM).
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Figure 11. Comparison of grid-converged computations (Table I) with measurements [36, 71] of
shear Reynolds-stress (˜u′′v′′, u′v′) at various axial stations, for the Ardonceau [36, 71] �c = 18◦
compression-ramp interaction (M∞ = 2.25, Re�0 = 7× 103) using the GV [33] and WNF-LSS [34]
wall-normal-free RSMs, the LSS [37, 51] RSM with geometric normals and the LS [18] k–ε model

(iso shear Reynolds-stress computed with the GV RSM).

Comparison of grid-converged computed ṽ′′v′′ and measured v′v′ normal stresses (Figure 10)
yields some very interesting conclusions. The GV RSM (and the WNF-LSS RSM) overestimates
ṽ′′v′′ at the beginning of the boundary-layer/shock-wave interaction, by about the same level that
it underestimates ˜u′′u′′ (Figure 10).

However, the LSS RSM which predicts the correct level of the x-wise component (Figure 10),
overestimates the level of the y-wise component (Figure 10) at the beginning of the interaction
(x�−0.5�0) and underestimates the ṽ′′v′′ level at the end of the interaction (x�1.5�0). This
indicates that the overall energy level is not badly predicted by the two wall-normal-free RSMs
contrary to the wall-topology-dependent LSS RSM, but also that it is not quite correctly redistributed
along components (Ardonceau [36] has pointed out that the measurements clearly indicate that
turbulence is produced on ˜u′′u′′ and then redistributed over the other components). The overall
comparison of Reynolds-stresses substantiates the opinion that even better results can be obtained
using the wall-normal-free models presented [34], by improving the rapid pressure-strain model
used [33], eventually including the effects of compressibility following the ideas of Pantano and
Sarkar [43]. On the other hand, in the relaxation region (x�1.5�0), the GV RSM is in very good
agreement with the experimental data, whereas the LS k–ε gives the worst prediction whatever the
location. Comparison of grid-converged (Table I) computed ũ′′v′′ and measured u′v′ shear-stress
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(Figure 11) indicates that the GV wall-normal-free RSM performs better than the other models
because, although it fails to predict the measured levels of turbulence, it is the only one to capture
the experimentally observed double-peak feature at the end of the interaction (x�1.5�0). The
fact that the LSS and the WNF-LSS RSMs give similar results, underlines the link between the
rapid-part redistribution modelling (Equation (29)) and the good prediction of the ũ′′v′′ component
particular form. The k–ε model is again very far from the experimental results with a very low level,
especially in the outer part of the boundary layer. This observation indicates how the Boussinesq
hypothesis (Equation (14)) completely breaks down in this part of the flow, while Reynolds-stress
models, based on transport equations, are more representative of the flow physics.

3.7.4. Transport-equations budgets analysis. Analysis of the transport-equations budgets for the
four Reynolds-stress-tensor components (Figures 12–15) and for the turbulent-kinetic energy
(Figure 16), completes the turbulent closures evaluation.

Figure 12. ˜u′′u′′ Reynolds-stress transport-equation budgets (× 10−8 kg m−1 s−3) at four axial stations,
for the Ardonceau [36, 71] �c = 18◦ compression-ramp interaction (M∞ = 2.25, Re�0 = 7× 103) using the
GV [33] and WNF-LSS [34] wall-normal-free RSMs and the LSS [37, 51] RSM with geometric normals

(iso Mach number computed with the GV RSM).
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Figure 13. ṽ′′v′′ Reynolds-stress transport-equation budgets (× 10−8 kgm−1 s−3) at four axial stations, for
the Ardonceau [36, 71] �c = 18◦ compression-ramp interaction (M∞ = 2.25, Re�0 = 7× 103) using the GV
[33] and WNF-LSS [34] wall-normal-free RSMs and the LSS [37, 51] RSM with geometric normals (iso

Mach number computed with the GV RSM).

Comparison of the three Reynolds-stress models for the ˜u′′u′′ component transport-equation
budgets shows that the production is the most important term, especially at the detachment point
(x = −0.02m=−2.5�0). We can note that the GV RSM, which predicts the experimental upstream
interaction length correctly, gives a higher production than the two other RSMs which predict a
detachment point located at x =−0.012m= −1.5�0. Since the production term is exact for full
Reynolds-stress closures, the correct prediction given by the GV RSM can only be caused by the
redistribution term, in particular the rapid part. Besides, the GV RSM, which uses an optimized
redistribution closure (Equation (29)) gives a very important level of the rapid redistribution term
compared to the LSS RSM and its wall-normal-free version WNF-LSS RSM which use the closure
proposed by Launder and Shima [37] (Equation (31)). On the other hand, the level of the rapid-
redistribution term is highly increased by replacing the geometric wall-normals (which are present
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Figure 14. ˜w′′w′′ Reynolds-stress transport-equation budgets (× 10−8 kgm−1 s−3) at four axial stations,
for the Ardonceau [36, 71] �c = 18◦ compression-ramp interaction (M∞ = 2.25, Re�0 = 7× 103) using the
GV [33] and WNF-LSS [34] wall-normal-free RSMs and the LSS [37, 51] RSM with geometric normals

(iso Mach number computed with the GV RSM).

in the LSS RSM) by the unit-vector eI (Equation (25)), which is included in the wall-normal-free
version WNF-LSS RSM.

Furthermore, we can note the particular shape of every term (except for the slow-part redistribu-
tion and the dissipation terms) predicted by the GVRSM in the relaxation region (x=0.012m=1.5�0
and x = 0.036m= 4.5�0). Consequently, this particular shape, which is also observed for the three
other Reynolds-stress-tensor components (Figures 13–15), is due to the rapid-redistribution model
developed by Gerolymos and Vallet [33] (Equation (29)). Note that experimental y-wise normal
and shear Reynolds stresses distributions (Figures 10 and 11) present the same kind of shape,
which is predicted correctly only by the GV RSM.

Concerning the ˜w′′w′′ component budget (Figure 14), the production term is zero in 2-D
simulation. However, it is interesting to note that the most important contribution is due to the
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Figure 15. ˜u′′v′′ shear-stress transport-equation budgets (× 10−8 kgm−1 s−3) at four axial stations, for the
Ardonceau [36, 71] �c = 18◦ compression-ramp interaction (M∞ = 2.25, Re�0 = 7× 103) using the GV
[33] and WNF-LSS [34] wall-normal-free RSMs and the LSS [37, 51] RSM with geometric normals (iso

Mach-number computed with the GV RSM).

redistribution term (rapid and slow parts) for all of the second-moment closures, especially for the
GV RSM.

Finally, the LSS RSM predicts a convection contribution higher than production for the shear-
stress transport-equation everywhere, contrary to its wall-normal-free version WNF-LSS RSM and
the GV RSM (Figure 15). The GV RSM, which gives the best results in the relaxation region
(x�1.5�0) for the shear-stress distribution (Figure 11), predicts a production term with a level
higher by a factor two.

A comparison between the second-moment closure GV RSM and the LS k–ε model is achieved
through the turbulent-kinetic-energy production Pk and the dissipation term contribution
(Figure 16). The turbulent-kinetic-energy production is an exact term in the GV RSM whereas
the Boussinesq hypothesis is used in the LS k–ε model. Both turbulent closures use the same
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Figure 16. Turbulent-kinetic-energy production and dissipation budgets (× 10−8 kg m−1 s−3) at four axial
stations, for the Ardonceau [36, 71] �c = 18◦ compression-ramp interaction (M∞ = 2.25, Re�0 = 7× 103)
using the GV RSM [33] and the LS [18] k–ε model (iso Mach-number computed with the LS k–ε model).

dissipation equation (Equation (12)) except for the turbulent diffusion (Equation (15)), and there is
no major difference in ε between the GV RSM and the LS k–ε model. On the other hand, the shape
of the turbulent-kinetic-energy production is quite different. Indeed, the turbulent-kinetic-energy
production predicted by the Reynolds-stress model is close to zero near the wall in the relaxation
region with a pronounced peak away from the wall. Furthermore the level of the production is
more important for the GV RSM than for the LS k–ε.

3.8. A note on experimental shock-wave unsteadiness

In the �c = 18◦ compression-ramp comparisons, the GV RSM is in good agreement with ex-
periment at the outer part of the boundary layer except for the x = 0.5�0 location for both the
y-wise normal and the shear Reynolds-stresses (Figures 10 and 11) where the experimental turbu-
lence level is very high. This discrepancy exists also for the �c = 13◦ compression-ramp angle at
x =−0.5�0 and x = 0.5�0 for both the ˜u′′u′′ and the ṽ′′v′′ components (Figures 8 and 9). Small
experimental oscillations of the shock-wave offer an explanation which is able to justify for all
of the three compression-ramp angles (1) the high experimental turbulence level at the outer part
of the boundary layer in the separation zone, (2) the bad level of the computed Reynolds-stresses
with an overall satisfactory energy level, and (3) the good prediction of the wall-pressure and of
the mean-velocity profiles. Indeed, numerous experimental studies, which are described in detail
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by Dolling [35] and Knight et al. [12], have measured the unsteadiness of the shock-wave, es-
pecially in separated supersonic flows. However, most of the experimental data [20, 36] used to
assess turbulence closures are time averaged and because of the low frequency of the shock-wave
oscillation (difficulty to reach statistical convergence and possibility to have a combined set-up
oscillation), appropriate caution should be used when these measurements are compared with com-
putational results. Furthermore, statistic turbulence closures (RANS models) are not able to predict
unsteady flows, except for deterministic cases associated with time-dependent boundary-conditions
such as fluctuating back- or inlet-pressure, or moving/deforming solid boundaries. Consequently,
only unsteady computations, which are able to take into account the experimental shock-wave
oscillation such as large eddy simulation (LES) or hybrid very large eddy simulation using multi-
equation statistical models for the unresolved stresses (RSM-VLES), should be used to improve
the Reynolds-stresses distributions in compression-ramp configurations. Notice, nonetheless that
if the low-frequency shock-wave oscillations are associated with large scale wind tunnel circuit
phenomena, additional modelling of set-up oscillation might be necessary.

4. CONCLUSIONS

In the present work, we studied the performance of second-moment closures for compression-ramp
oblique-shock-wave/turbulent-boundary-layer interaction, focusing on the prediction of turbulent
correlations, and on the budgets of the associated transport equations. To this purpose, we chose an
experimental database [36, 71] with detailed measurements of the Reynolds-stresses, and which has
also the advantage of relatively compressibility effects because of the relatively low Mach number
Msw = 2.25. Three low-Reynolds number Reynolds-stress models and a standard linear k–ε model
were assessed in three supersonic compression-corner flows studied experimentally by Ardonceau
[36, 71]. The present work examined (1) the effect of eliminating the geometric parameters in the
Launder and Shima [37] RSM (with the ε transport equation of the Launder and Sharma [18] k–ε
closure), (2) the importance of the redistribution term in detached flows, and (3) the possible impact
of the experimental shock-wave oscillation on statistical-closures (RANS models) predictions. The
RSM developed by Gerolymos and Vallet [33], which is wall-topology free and includes an
optimized rapid-redistribution closure, predicts correctly the wall-pressure and the mean-velocity
distributions for all of the three compression-ramp angles. On the other hand, the Launder and Shima
[37] RSM, which includes the distance from the wall and the normal to the wall, seems unsuitable
for the larger angle (�c = 18◦). Furthermore, the LSS RSM and its wall-topology-free version
(WNF-LSS RSM) underestimate the upstream-interaction length for the �c = 13◦ and the �c = 18◦
compression-ramp angles. Besides, a detailed analysis of transport-equation budgets for several
Reynolds-stresses and for the turbulent-kinetic energy shows that the rapid-part redistribution model
proposed by Gerolymos and Vallet [33] increases the Reynolds-stresses production and improves the
shape of the Reynolds-stresses profiles. Consequently, the redistribution-term modelling is of prime
importance in supersonic compression-corner flows especially when an important separation zone
occurs. The Launder and Sharma [18] k–ε closure, which does not contain a redistribution term,
completely fails to reproduce the anisotropic turbulence structure for all of the three compression-
ramp angles.

Reynolds-stress models offer high predictive potential compared with lower-order statisti-
cal turbulence closures such as standard linear k–ε models. An appropriate wall-topology-free
redistribution-term model is able to predict the mean-flow distributions of shock-wave/boundary-
layer interaction both for detached or unseparated flows. Nevertheless, a discrepancy is observed
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for the Reynolds-stresses profiles especially in the shock-wave foot region which could be caused
by the experimental low-frequency shock-wave oscillation. Unfortunately, the main weakness of
second-moment closures is their inability to simulate non-deterministic unsteadiness which is due
to turbulence. Thus, to improve the Reynolds-stress prediction in this region, an hybrid RSM-VLES
model that uses a Reynolds-stress closure to compute the unresolved stresses [74] should be used.
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